Vibrations of narrow microbeams predeformed by an electric field
نویسندگان
چکیده
Vibrations of a fixed–fixed narrow microbeam electrostatically actuated by applying a voltage difference to it and a parallel rigid conductor are analyzed. For gaps between the two conductors that are comparable to the beam’s thickness, the fundamental frequency of the beam may first increase with increasing applied voltage, before suddenly dropping at the pull-in voltage. Available models fail to accurately describe this behavior of the frequency versus voltage diagram for narrow microbeams, that results from a combination of strain-hardening and electrostatic softening effects. A distributed electromechanical model, that accounts for electrostatic fringing fields, finite deflections and residual stresses, is proposed. A recent estimate of the electrostatic force incorporating fringing fields due to both finite width and finite thickness of the microbeam is employed. The lowest frequency is extracted with a simple and computationally efficient one degree-offreedom model obtained by approximating the deflection field with the static deflection of a fixed–fixed microbeam loaded by a uniformly distributed force. The model’s predictions are in good agreement with those from three-dimensional finiteelement simulations. r 2007 Elsevier Ltd. All rights reserved.
منابع مشابه
Correction to the Paper Capacitance Estimate for Electrostatically Actuated Narrow Microbeams
A novel estimate for the line-to-ground capacitance that accurately predicts the pull-in instability parameters for narrow electrostatically actuated microbeams is proposed. Parameters in the proposed formula are obtained by least square fitting data from a fully converged numerical solution with the method of moments. For a narrow microbeam, it is shown that the new formula significantly impro...
متن کاملEFFECT OF ELECTRIC FIELD ON PD ACTIVITY AND DAMAGE INTO SOLID DIELECTRIC MATERIALS
Abstract – In this paper, the effect of applied electric field on the damage due to partial discharges activity into the surroundings dielectrics of a narrow channel encapsulated within the volume of a dielectric material is evaluated using a kinetic model based on Particle in Cell - Monte Carlo Collision (PIC-MCC) model. After application of an electric field across a dielectric material which...
متن کاملFree vibrations analysis of a sandwich rectangular plate with electrorheological fluid core
In this paper, a rectangular sandwich plate with a constrained layer and an electrorheological (ER) fluid core is investigated. The rectangular plate is covered an ER fluid core and a constraining layer to improve the stability of the system. The two outer layers of the sandwich structure are elastic. The viscoelastic materials express the middle layer behavior under electric field and small st...
متن کاملDynamic Stability of Laminated Composite Plates with an External Smart Damper
The dynamic stability of a composite plate with external electrorheological (ER) damper subjected to an axial periodic load is investigated. Electrorheological fluids are a class of smart materials, which exhibit reversible changes in mechanical properties when subjected to an electric field. As a result, the dynamic behavior of the structure is changed. The ER damper is used for suppressing th...
متن کاملNumerical Study of Pure Electroconvection and Combined Electro-thermo-convection in Horizontal Channels
Electrohydrodynamic effect on natural convection in horizontal channels is investigated from a numerical point of view. The EHD effect is induced by narrow strip electrodes placed at the bottom wall of the channel. The channel is subjected in a first stage only to the electric forces, and in a second stage to the simultaneous action of a temperature gradient and an electric field. The interacti...
متن کامل